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Abstract—For wave~des whose geometries are described as
coordinate sdrfaces in circular polar coordinates, a finite-element

method is used to derive base mMrices over a triangular element in

the polar geometry. These matrices are &ed to solve,mode problems

in circular, sector, double-ridged circular, and spiral waveguides.

The discussion is mainly in terms of cutoff frequency, bandwidth,

and convergence.

I. INTRODUCTION

F INITE-ELEMENT methods [1] have become well

estaliished as a means of solving partial differential

equations iri various branches of engineering. In the

electrical sciences, most attention [2], [3] has been di-

rected towards the solution of linear ~equations for Lap-

lace’s equation or eigenvalue equations for the wave

equation. In both cases, it is relatively easy in a homo-

geneous system to formulate a variational expression for

some global parameter of the problem, e.g., energy in

static problems and wavenurnber in wave equation prob-

lems. Up to the present, the formulation of the finite-

element solution to these problems has been expressed

in terms of Cartesian geometry only. In other words, the

finite element chosen in two dimensions has been an

arbitrary triangle in the xy plane. For problems involving

Cartesian boundaries, this approach is clearly more
efficient than any other possible cho;ce of element. How-

ever, in those cases where the, waveguide geometry is not

Cartesian, as for example in circular, parabolic, or ellipti-

cal waveguides, it is impossible with a Cartesian element

to fill the waveguide cross section completely except by a

tedious and wasteful limiting process. Isoparametric ele-

ments [4] have been used to describe curved boundaries.

The function and element boundary behavior are both

expressed in terms of the same polynomial expansion.

Boundaries which can be described exactly by polyno-

mials can be modeled exactly by the isopararnetric ele-

ment. NonCartesian coordinate surfaces do not fall into

this category and require special tzeatment. Clearly, in

those cases where the waveguide geometry can be de-

scribed in terms of coordinate surfaces where the wave

equation is separable, it is of advantage to choose the

finite element [.5] in that system. In this paper, we discuss

solutions of the wave equation in circular polar coordinates

for which we define a finite element as a linear triangle

in an rtl coordinate system. The finite-element base

matrices for such a choice are then described in some

detail, taking account of special difficulties that arise at

the origin of such a system. The finite-element matrices
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are used as building blocks for a particular geometry to—
construct the matrix equation for the problem by linear

superposition of an ensemble of elements.

In view of our experience [6] with Cartesian geometry,

we have reason to expect that the rate of convergence on

subdividing the mesh will be approximately quadratic for

the dominant mode in the absence of any special features

such as singular points. From this point of view, and to

establish absolute errors, we treat the case of circular

and sector waveguides. This initial stage leads us on to

the circular double-ridged waveguide [7] which has possi-

bilities (as in rectangular geometry) as a waveguide with

reduced dominant mode cutoff and wave impedance, to-

gether with increased bandwidth as compared with a

waveguide without the ridges. In this respect, the wave-

guide finds application as a supporting structure for Gunn

or IMP-ATT solid-state devices in the generation of micro-

wave frequencies. The mode structure of the guide is

examined and particular attention paid to the dominant

Hll mode and bandwidth.

The paper is rounded off by a discussion of the spiral

waveguide which requires no special treatment in the

finite-element method. Some geometries are shown which

indicate the range and flexibility of the finite-element

method once the base matrices are known” and a particular

case of spiral waveguide is examined in some detail.

II. FINITE ELEMENTS IN CIRCULAR POLARS

For a homogeneous uniform waveguide propagating an

electromagnetic wave along its axis, it is well known that

the longitudinal field o satisfies the variational functional

i(~) = // \ v,+ ]’ ds + k’ // ~’dS (1)

s s

where ‘S is the waveguide cross section and k is the cutoff

wavenumber. we use the variational expression as the

basis for the development of the finite-element matrices.

In Cartesian geometry, the finite element is a rectilinear

triangle in the xv plane, ensuring complete polynomial

expressions of the field. In circular polar geometry, the

new finite element is again a triangle but now with straight

line edges in the TOplane; in other words, a triangle in the

qy plane whose contours are, in general, circular spirals

(see Fig. 1). It is mentioned in passing that the circular

arc and radial line are special cases of the spiral. The func-

tion o is expressed within the triangle as a linear con~bina-

tion of its point values at the triangle vertices

@ = A-’ ~ @,(a,7 + the+ C,) (2)
i-l
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Fig. 1. The circular polar finite element in the xv and M plane.

where

ai=Oj —Ok bi=rk–rl

using cyclic notation mod 3 and

3

A = &ri – r~) = ~r,(th – Oj). (4)
‘j=l i-l

Clearly

~a%=&b%=O ‘&=A. (5)
icl i=l i=l

It is convenient when working out the finite-element

matrices to use a coordinate system W, = 1,2,3, where we

define Wi as

Wi = atr + biO + Ci. (6)

Equation (2) reduces to the simple form

%=1

with

and

indicating the interdependence of the new coordinates.

we are now in a position to substitute for 4 from (7)
into (1) and differential e -with respect to &, i = 1,2,3.

Carrying out the resulting integrations over a single ele-

ment E, we arrive at the basic finite-element matrix

equation holding for a single triangle in the cross section

where & is the column vector [4w+.M$3] and S~~ and T~.
are 3 X 3 symmetric positive-definite finite-element ma-

trices for the polar triangle.

They are easily shown [5] to be given by

and we find on evaluation of the integrals that

ASmn = a,~a,,F + b~bmG (12)
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where

( 13)

G = – ~ r~(ri – rj)–l(~~ – ri)–llnri (14)
i=l

using cyclic notation and

T~n = & (3~i + Tj + Ti) , m,=fn,=~

.— + (27”i + 27”,+ rk), m,=~, n=j, m%n.

The quantity G becomes indeterminate under

circumstances which are dealt with as follows.

1) If one radial coordinate is zero, say r,, then

G = (ri – r~)–l in rj/rlc.

2) AS in 1), but rj = rk, then

G = l/rj.

(15)

certain

(16)

(17)

3) If two radial coordinates are equal and nonzero, say

r; = rk # O, then

G = (?”, – ~,)-’[rk hl (~kirj) – (?”, – ?“,)]. ‘(18)

4) Asin3), butri=?”~ =0.

Here we have the intriguing prospect which does not

arise in Cartesian geometry of an element with only two

separate points in it, one of them at the origin of the xy

plane. This is because if two points have the same value

of radial coordinates, namely zero, the value of @ at the

two points must be the same since the distance between

the points is zero. In Cartesian geometry, the area of such

an element would be zero, but not so in polar geometry.

In order to derive the matrices (2 X 2) for this special

case, we assume that, say, ‘L = rk = 0. Thm Since @ = ~k>

e, # ok, we use the expression

~ = A-’[_,(l – T7j) + ojwj] (19)

in the variational formula (1) as previously. Carrying out

the necessary operations we find that

Asmn = (Ot – ek)’(–l)m+nF’, m,n = 1,2 (20)

A—— m#n
5 ‘“

(21)

The result for T~n can easily be obtained from (1.5) by

setting ri = rk = O and reducing the matrix. For the pur-

poses of computation, it is more efficient to treat the last
special case as if the triangle had three separate labeled
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points and to program the matrix entries appropriately.
In any case, possession of the matrices Sand Tallows us

to solve any waveguide problem where the boundaries

form parts of spiral contours. We are also guaranteed

that all eigenvalues of the matrix equation will be upper

bounds to the exact cutoff wavenumbers of the problem.

It is usually extremely difficult when using finite elements

in eigenvalue problems to estimate the absolute error in

the computed eigenvalues. The rate of convergence of the

solution with decreasing element size is something which

is more easily found. In the case of a cross section with

no singular points, i.e., points at which first derivatives

of the field become infinite, the error is reduced quad-

ratically with mesh size. For modes other than the dom-

inant or for geometries including a singular point, e.g.,

the double-ridged waveguide which occurs later, the rate

of convergence is lower and, in the worse case, decreases

linearly with mesh size. In this paper, we attempt to

establish the rate of convergence and absolute error of the

eigenvalue on an ad hoc basis and to use these results

together with Aitken’s 62process [8] to extrapolate.

III. APPLICATIONS

A. Circular and Sector Waveguide

The most straightforward application of the finite-ele-

ment method in polar geometry is clearly the circular

waveguide which we examine to test our method and

establish rates of convergence and absolute error bounds.

We examine one quadrant of a circular waveguide with

boundary conditions appropriate to H.m modes with n

odd. This waveguide is shown in the xy and rtl planes,

respectively, in Fig. 2, together with the splitting up of

the region into finite elements. The letters N and D on

the boundary denote Neumann (a~jan = O) and Dirichlet

(0 = 0) conditions, respectively. Note that in this cross
section there are two elements touching the origin having

only two points per element. In Fig. 2(b) the single point

at the origin is represented by the axis r = O. By linearly

superposing the finite-element matrices for each element

in turn, we build up a single matrix equation whose eigen-

values are kz and whose eigenvector is a list of the function

values at nodal points.

Beginning with the simple mesh shown in Fig. 2, we

subdivide the cross section uniformly producing a quad-

ratic increase in the dimension N of the overall matrix

(a) (b)

Fig. 2. Quadrant of a circular waveguide showing the division of
the cross section into finite elements. Neumann (N) and Dirichlet
(D) boundary conditions are shown.

TABLE I
CUTOFFWAVENUMBERFOR ODD H MODES IN CIRCULAR WAVEGUIDE

extrapolated 1.843 4.213 5.342 6.519 7.972 8.695

quadratic 1.&2 4..200 5.34.0 6.416 8.002 8.575

exact (9) 1. ml l!.. 201 5.331 6.416 8.015 8.536

equation. Results are presented in Table I for the cutoff

wavenumber ka against matrix order N for the first six

odd H modes in the circular waveguide. These are com-

pared with exact values [9] obtained from the zeros of

the appropriate Bessel function. Extrapolated values are

also given based on Aitken’s 82 process involving three

successive estimates to a quantity. Lastly, a row entitled

“quadratic” is given which computes an approximation

based on two successive estimates assuming quadratic

decrease in the error. The results headed “quadratic”

are based on the last two estimates (n = 32 and 128) and

confirm the assumption on which they are based. The

extrapolated results do not compare favorably with the

“quadratic” estimate, at least for the higher modes, since

they involve the least accurate results (n = 8) where the

error behavior is erratic. The unsettled error behavior

arises because there are too few points in the cross section

to adequately describe the field dependence. In the ter-

minology of the communications engineer, the Nyquist

or sampling rate of the field is below threshold. At any

rate, the error behavior for the dominant mode is approxi-

mately quadratic and becomes so for higher order modes

when sufficient points exist to describe their fluctuations

well. In absolute terms, we find, as expected, the error

least for the dominant mode and increasing with the

complexity of the mode. For the largest matrix tried, the

error for the dominant mode is less than 0.5 percent and

increases to -3 percent in the worst case.

Owing to the uniformity of the waveguide along the

0 axis with homogeneous boundary conditions at the ends,

the computed eigenvector shows the exact [6] behavior

along the 19axis, i.e., points on the same radial line are

related by the appropriate cosine or sine behavior. This

behavior provides a useful check to the programmer.

If the angle 00of Fig. 2(b) is varied between O and 360°,

we produce the class of waveguides known as sector [10]

waveguides, since their walls form the sides of a circular

sector. The cutoff wavenumber of the dominant mode is

compared with the results of a finite-element analysis as

a function of section angle in Table II. This example is

particularly apt in that as 00 is varied, the point at the

origin describes all the possible types of singularity we

are likely to meet in waveguides. NO extra programming

is required for these cases, since a single data card informs

the computer of the value of & From the results of Table
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TABLE II
CUTOE~WAVENUMBEROFTH;u~;~kF MODE IN SECTORWAVE-

n

8 14.498 I 2.610 I 1.938 /1.504 11.301t

1’28 lk.21647 12468% 11.84920 IW64 /1.198’4

exact L. 201 2.461 1. m 1.401 1.166

II we can make some comments about the rate of con-

vergence in the presence of a singular point. By differenc-

ing successive approximations, we see that the error

decreases most slowly (almost linearly) for the 360°

corner (% = 360°) and most rapidly (better than quad-

ratic) where there is no singular point and 00 is smallest

(00 = 30°). The in-between case studied previously

(00 = 90°) shows the standard quadratic error behavior.

The linear behavior for the 360° corner arises because the

first derivative of the potential is infinite and therefore

discontinuous.

The special cases of circular and sector waveguides indi-

cate that we can hope for, at best, quadratic convergence

of the eigenvalue to the exact value with an absolute

error in the extrapolated eigenvalue not exceeding 1 per-

cent for matrix orders over 100.

B. Double-Ridged Circular Waveguides

We turn now to an important class of polar geometry

waveguide whose solution is new and which could have

important application as a supporting structure in the

generation of microwave frequencies by means of the

Gunn diode, IMPATT, and other solid-state devices. This

waveguide is the double-ridged circular waveguide [7]

whose cross section in the first quadrant is shown in

Fig. 3, for the special case P = rO/a = 1/2, 00 = 7r/4. The

boundary conditions are those for H modes having odd

symmetry about the y axis and even symmetry about the

x axis. The lowest order of these modes is clearly the

dominant mode which we call the HII since it is the per-

turbed version of the HII mode in the circular waveguide.

A second HII mode exists whose symmetry about the x

and y axes is reversed. In fact, every mode of the circular

guide has its two-fold degeneracy split by the introduction

of the ridge into the waveguide. In Fig. 3, the cross section

is shown split up into 12 elements and 7 labeled points

taking account of the zero field condition on the y axis.

This is the simplest division chosen and forms the starting

point for more sophisticated subdivisions. WJe examine the

cutoff wavenumbers ka of the first three H modes of the

waveguide in Fig. 3 on the basis of the division shown and

two further subdivisions each time doubling the number of

labeled points, d along the x or r axis, and approximately

squaring the matrix order N. The results are presented in
Table III together with extrapolated values obtained by

means of Aitken’s 62 mwcess. The rate of converszence for. .

kzf2i-
(a) (b)

Fig. 3. Quadrant of a double-ridg~d circular. waveguide showing
the division of the cross section into fimte elemen%s.

TABLE III
CUTOFF WAVENUMBERFOR ODD H MODES IN DOUBLE-RIDGED

WAVEGUIDE

m

0 100 1.469 5.429 5.153

extrapolated 1.456 5.175 5.103

F = 1/2; 00 = r/4.

the Hll mode is approximately quadratic and is the best

rate we might expect, considering the presence of the

singular point of the ridge. Taking account of the quad-

ratic convergence and the earlier results on the sector

waveguide with a 3T/2 corner, the absolute error in the

dominant mode eigenvalue can be expected not to exceed

1 percent, This view is born out by the extrapolated value.

Rates of convergence for the HU and Hl, modes are rather

poorer than for the dominant modes owing to the fact

that their eigenvectors vary much more rapidly over the

cross section. It is safe to assume that the wavenumbers for

the smallest subdivision (d = 8) are correct to within a

few percent. Acting on these assumptions concerning

error rate, we have computed the dominant HH mode

cutoff ka for a range of values of ridge dimensions using

the mesh subdivision which gives d = 8. These results

are shown in Fig. 4 with k/kc plotted along the vertical

axis (kc is the cutoff wavenumber for circular svaveguide

of radius a). Clearly, a reduction in the cutoff frequency

of the dominant mode is possible for a large variety of

ridge dimensions. Since the wave impedance is defined

using standard notation as

it k also reduced at a given frequent y below its value k

the circular waveguide of the same outer radius. The

double-ridged waveguide thus has possible advantages

over conventional circular waveguides in that the wave

impedance is reduced and that the waveguide dimensions

are reduced for a fixed frequency of propagation. It remains

to be seen how the waveguide bandwidth varies as a func-

tion of the ridge parameters.
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1.(

o.

Fig.4. Cutoff wavenumberof double-ridged circular waveguide asafunctionof ridge parameters.

TABLE IV
CUTOFFWAVENUMBERIN DOUBm-RIDGED WAVEGUIDESFORBOTH

E AND H MODES

29 ~ol
N N 3.132 3.832

22
‘a

D D 3.252 3.054

18
% N D

7.898 3.832

20
%1 D

N 5.004 >.8>2

22
Eol

N N 4.103 2.&05

17 E21 D D 8.109 5.136

F = 1/2;00 = ~/4.

We begin by taking the waveguide of Fig. 3 and com-

puting the cutoff wavenumbers of the lowest modes for

both E and H modes, allowing all possible symmetries on

the axes. A fairly crude mesh is used (d “= 4) since it is

intended only to gain a qualitative picture of the effect of

the ridge on the cutoff frequencies. These solutions are

presented in Table IV, together with those for the corre-

sponding circular waveguide. It is interesting to note that

the Hll mode with odd symmetry about the x axis has its

cutoff frequency sharply increased as do the Eol ancl Ell

modes. In order to define bandwidth we must consider

the means of excitation of the dominant mode. Assuming

this to be such that only those modes having the same

symmetries as the dominant mode can exist, the bandwidth

is defined as the cliff erence between the lowest and next-

to-lowest cutoff frequencies. This is shown in units of lea

for the dominant mode of circular waveguides as a func-

tion of the ridge dimensions in Fig. 5 with the bandwidth

of circular waveguide shown for comparison. If 00 is taken

to be around 45°, increases in bandwidth can be combined
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Fig. 5. Bandwidth of double-ridged circular waveguide in units of ka of circular waveguide.

with a low figure of cutoff frequency. It is curious to note

that the bandwidth does not increase indefinitely but for

values of ~ less than % levels off. This occurs because the

ridge fills such a large portion of the cross sectiofi that it

affects equally the dominant and next higher order mode.

We complete discussion of the double-ridged waveguide

by showing the field behavior of the first three odd H
modes. These are shown in Fig. 6 as lines of constant

longitudinal magnetic field or” transverse electric field

normalized to a maximum value of ten. These results are

given directly by the computer as the eigenvectors of the

problem and can be produced by graph plotter. The re-

maining field components if required are found by a

process of numerical differentiation.

(7. Spiral Waveguides

We complete the treatment of general cylindrical polar

geometry waveguides with a dkcussion of spiral wave-

guides, i.e., any waveguide whose boundaries form seg-

ments of circular spirals. The number of possibilities is

naturally infinite but we display several which are of some

interest in Fig. 7. Each of these cross sections consists of

straight-line segments in the rO plane and therefore is

amenable to a direct analysis by the finite-element method.

We choose to examine the waveguide shown in Fig. 8 with

a simple choice of finite elements. Note that the points

cm the o axis in Fig. 8(b) all have the same function value.

In looking for the dominant mode as a function of 60 we

find those of waveguide “pisces” of Fig. 7 when 00 = w/2

and those of the waveguide “heart” of Fig. 7 when

00 = ~. These results are shown @ Table V as a ftmetion

of matrix dimensions for modes possessing an electric

wall along the z axis. We note that for the dominatit mode

the rate of convergence is almost quadratic for both values

of 6%.This confirms our view derived from earlier results.

In comparing the results with those for a circular wave-’

guide of radius a, we observe the same mode structure

except for the absence of the low-loss HOI mode in a spiral

waveguide which is owing to the presence of the sharp

corners in the cross section.
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Fig-. 6. Field dependence of the first three H modes in a double-
ridged circular waveguide having even and odd symmetry about
the y and x axes, respectively. (a) HI1. (b) HM. (c) HS1.
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Fig. 7. Some possible waveguide shapes with spiral contours.
(a) Heart. (b) Pisces. (c) Snal. (d) Shield. (e) Ying-yang. (f)
Norman.

Y

e.- ,92

TABLE V
CUTOFF WAVENUMBER FOR A SPIRAL WAVEGUIDE ka

r’.=” j’~’o=”------+

d N ’11 H
21 ’31 ’11

H
21 ’31

2 9 2.162 4.334 5.82o 1.811 3.615 &. 3s3

8 la 1.963 >.520 4.947 1.605 2. @43 3.269

extrapolated 1.954 3.336 4.802 1.593 2.633 3.227

(a)

e.

‘1’

(b)

Fig. 8. A spiral waveguide showing mesh subdivision in the xy and
rO planes.
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IV. CONCLUSIONS

The finite-element method for cylindrical polaigeome-

tries has been developed and applied to circular and sector

waveguidesto establish rates of convergence and absolute

errors in cross sections with .and without singular points.

The mode structure of the double-ridged waveguide has

been established for various symmetries and it is concluded

that the waveguide has the advantages over the circular

waveguide of 1) reduced cutoff frequency and wave

impedance and 2) increased bandwidth. The most general

type of waveguide in polar geometry directly solvable by

this method has spiral boundaries. Examples of these have

been given and particular cases studied. It is clear that

other geometries not described here but nevertheless

interesting might also be solved by the method. There is,

for example, a whole class of problems involving coaxial

structures where the solution of Laplace’s or Helmholtz’s

equation might be required. This generalization of the

usual finite-element method allows boundaries linear in an

rO coordinate system to be treated exactly and effectively

removes from consideration the need to treat [11] trunca-

tion error at curved boundaries.
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The Solution of Inhomogeneous Waveguide Problems

Using a Transmission-Line Matrix

PETER B. JOHNS

Abstract—A method of applying the transmission-line matrix

method to inhomogeneous wave@ide structures is described. The

tectilque uses open-circuit stubs of variable characteristic im-

pedance at each node in the matrix, thereby providing an analog for

a dielectric. LSE and LSM modes in rectangular waveguides, and

problems involving a step of dielectric are solved. Results are given

in terms of the cutoff frequency and field pattern for continuous

waveguides, and the waveguide input impedance for scattering

problems.

INTRODUCTION

THE transmission-line matrix method has been used

to solve scattering problems in waveguides [1] and

also to obtain the cutoff frequencies for waveguides of

arbitrary cross section [2]. In both cases, the waveguides

Manuscript received June 1, 1973; revised September 14, 1973.
The author is with the Department of Electrical and Electronic

Engineering, University of Nottinghamj Nottingham, England.

were assumed to be filled with a homogeneous medium.

In applying the principles of the transmission-line matrix

method to random walk analysis [3], results were ob-

tained for a one-dimensional inhomogeneously filled wave-

guide. However, there is a large class of inhomogeneous

waveguide problems that require solution in two space

dimensions and an application technique for the trans-

mission-line matrix method in such cases is introduced

in this paper.

MATRIX CONFIGURATION AND PROPERTIES

In [1] and [5], propagation in a two-dimensional me-

dium is represented by the voltages and currents on a

Cartesian mesh of TEM transmission lines. Analysis of

the mesh is accomplished by considering an impulsive

excitation and following the progress of impulses as they

propagate throughout the matrix. The mesh is represented

at each node bv a submatrix of four numbers descr’ibin~
“


