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Polar Geémetry Wa’veguides by Finite-Element Methods

P. DALY, MEMBER, IEEE

Abstract—For wavegides whose geometfies are described as
coordinate surfaces'in circular polar coordinates, a finite-element
method is used to derive base matrices over a triangular element in
the polar geometry. These matrices are used to solve ‘mode problems
in circular, sector, double-ridged circular, and spiral waveguides.
The discussion is mainly in terms of cutoff frequency, bandwidth,
and convergence.

I. INTRODUCTION

INITE-ELEMENT methods [1] have become well

established as a means of solving partial differential
equations il various branches of engineering. In the
electrical sciences, most attention [27], [3] has been di-
rected towards the solution of linear equations for Lap-
lace’s equation or eigenvalue equations for the wave
equation. In both cases, it is relatively easy in a homo-
gencous system to formulate a variational expression for
some global parameter of the problem, e.g., energy in
static problems and wavenumber in wave equation prob-
lems. Up to the present, the formulation of the finite-
element solution to these problems has been expressed
in terms of Cartesian geometty only. In ether words, the
finite element chosen in two dimensions has been an
arbitrary triangle in the zy plane. For problems involving
Cartesian boundaries, this approach is clearly more
efficient than any other possible choice of element. How-
ever, in those cases where the waveguide geometry is not
Cartesian, as for example in circular, parabolic, or ellipti-
cal waveguides, it is impossible with a Cartesian element
to fill the waveguide cross section completely except by a
tedious and wasteful limiting process. Isoparametric ele-
ments [4] have been used to describe curved boundaries.
The function and element boundary behavior are both
expressed in terms of the same polynomial expansion.
Boundaries which can be described exactly by polyno-
mials can be modeled exactly by the isoparametric ele-
ment. NonCartesian coordinate surfaces do not fall into
this category and require special treatment. Clearly, in
those cases where the waveguide geometry can be de-
seribed in terms of eoordinate surfaces where the wave
equation is separable, it is of advantage to choose the
finite element [5] in that system. In this paper, we discuss
solutions of the wave equation in circular polar coordinates
for which we define a finite element as a linear triangle
in an 79 coordinate system. The finite-element base
matrices for such a choice are then described in some
detail, taking account of special difficulties that arise at
the origin of such a system. The finite-element matrices
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are used as building blocks for a particular geometry to
construct the matrix equation for the problem by linear
superposition of an ensemble of elements.

In view of our experience [6] with Cartesian geometry,
we have reason to expect that the rate of convergence on
subdividing the mesh will be approximately quadratic for
the dominant mode in the absence of any special features
such as singular points. From this point of view, and to
establish absolute errors, we treat the case of circular
and sector waveguides. This initial stage leads us on to
the circular double-ridged waveguide [77] which has possi-
bilities (as in rectangular geometry) as a waveguide with
reduced dominant mode cutoff and wave impedance, to-
gether with increased bandwidth as compared with a
waveguide without the ridges. In this respect, the wave-
guide finds application as a supporting structure for Gunn
or 1MpPATT solid-state devices in the generation of micro-
wave frequencies. The mode structure of the guide is
examined and particular attention paid to the dominant
Hy; mode and bandwidth.

The paper is rounded off by a discussion of the spiral
waveguide which requires no special treatment in the
finite-element method. Some geometries are shown which
indicate the range and flexibility of the finite-element
method once the base matrices are known and a particular
case of spiral waveguide is examined in some detail.

II. Finite BrEMENTS IN CIRCULAR POLARS

For a homogeneous uniform waveguide propagating an
electromagnetic wave along its axis, it is well known that
the longitudinal field ¢ satisfies the variational functional

F<¢>=f/!vt¢12d8+kﬁff¢2ds (1)
8 S

where S is the waveguide cross section and % is the cutoff
wavenumber. We use the variational expression as the
basis for the development of the finite-element matrices.

In Cartesian geometry, the finite element is a rectilinear
triangle in the xy plane, ensuring complete polynomial
expressions of the field. In circular polar geometry, the
new finite element is again a triangle but now with straight
line edges in the 760 plane; in other words, a triangle in the
xy plane whose contours are, in general, circular spirals
(see Fig. 1). It is mentioned in passing that the circular
arc and radial line are special cases of the spiral. The func-
tion ¢ is expressed within the triangle as a linear combina-
tion of its point values at the triangle vertices

3
¢ =AY gi(ar + b0+ c.) (2)

Te=1
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Fig. 1. The circular polar finite element in the zy and ré plane.
where
a; = 0; — O bi=r—r
C; = 7‘]07, — Tkoj‘ (3)
using eyelic notation mod 3 and
3 3
A=30.(r; — 1) = X6 — 05). (4)
i=1 =1
Clearly
3 3 3
Ta=2b=0 > e = A (5)

=1 =1 =1

It is convenient when working out the finite-element
matrices to use a coordinate system W, = 1,2,3, where we
define W; as

Wi = a.r + b + c.. (6)
Equation (2) reduces to the simple form
3
= A1 oW (7)
=1
with
3 3
r= > rW; 6= 0W; (8)
=1 i=1
and
3
>W,=1 9)

indicating the interdependence of the new coordinates.
We are now in a position to substitute for ¢ from (7)
into (1) and differentiate with respect to ¢., ¢ = 1,2,3.
Carrying out the resulting integrations over a single ele-
ment F, we arrive at the basic finite-element matrix
equation holding for a single triangle in the cross section

Smn¢n = szmnd’n (10)

where ¢, is the eolumn vector [¢1,¢2,¢: ] and S, and Thn
are 3 X 3 symmetric positive-definite finite-element ma-
trices for the polar triangle.

They are easily shown [5] to be given by

A2 = Ut / / r drd + bub, f / ridrd (1)
' E E

and we find on evaluation of the integrals that

ASumn = am I -+ bub,G (12)

203

where
1 3
F==3r (13)
6 =1
3
G=—2r(ri—r)n—r)tlnr (14)
=1
using eyeclic notation and
T 2 (Bri + ri + 1)
mn T T, [ j ), = =
o0 i + 1 % m=mn=1
A (2r; 4+ 2r, + ) m N m #£
= — (2r; T = 1, = 7, < N
120 TR beomz
(15)

The quantity G becomes indeterminate under certain
circumstances which are dealt with as follows.
1) If one radial coordinate is zero, say ., then

G = (7']' — Tk)_l In Tj/Tk. (16)
2) Asin 1), but r; = 7, then
G = 1/r;. (17

3) If two radial coordinates are equal and nonzero, say
r; = 1 # 0, then

G = (re— r)[reIn (re/rj) — (e — 1) 1.

4) Asin 3), but r; = 1. = 0.

Here we have the intriguing prospect which does not
arise in Cartesian geometry of an element with only two
separate points in it, one of them at the origin of the zy
plane. This is because if two points have the same value
of radial coordinates, namely zero, the value of ¢ at the
two points must be the same since the distance between
the points is zero. In Cartesian geometry, the arca of such
an element would be zero, but not so in polar geometry.
In order to derive the matrices (2 X 2) for this special
case, we assume that, say, r, = rx = 0. Then, since ¢, = ¢y,
6, # 6, we use the expression

¢ = A7 [¢.(1 = W)) + ;Wi

in the variational formula (1) as previously. Carrying out
the necessary operations we find that

(18)

(19)

ASmn = (01 - ek)Z(_l)m—{-nF, mn = 172 (20)
A
Twn = 56 Ty, m=n
A
= %rj, m#n (21)

A= Tj(@k - 01).

The result for T, can easily be obtained from (15) by
setting r; = r = 0 and reducing the matrix. For the pur-
poses of computation, it is more efficient to treat the last
special case as if the triangle had three separate labeled
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points and to program the matrix entries appropriately.
In any case, possession of the matrices S and 7T allows us
to solve any waveguide problem where the boundaries
form parts of spiral contours. We are also guaranteed
that all eigenvalues of the matrix equation will be upper
bounds to the exact cutoff wavenumbers of the problem.
It is usually extremely difficult when using finite elements
in eigenvalue problems to estimate the absolute error in
the computed eigenvalues. The rate of convergence of the
solution with decreasing element size is something which
is more easily found. In the case of a cross section with
no singular points, i.e., points at which first derivatives
of the field become infinite, the error is reduced quad-
ratically with mesh size. For modes other than the dom-
inant or for geometries including a singular point, e.g.,
the double-ridged waveguide which occurs later, the rate
of convergence is lower and, in the worse case, decreases
linearly with mesh size. In this paper, we attempt to
establish the rate of convergence and absolute error of the
eigenvalue on an ad hoc basis and to use these results
together with Aitken’s 8% process [8] to extrapolate.

III. ApPLICATIONS

A. Circular and Sector Waveguide

The most straightforward application of the finite-ele-
ment method in polar geometry is clearly the circular
waveguide which we examine to test our method and
establish rates of convergence and absolute error bounds.
We examine one quadrant of a circular waveguide with
boundary conditions appropriate to H,. modes with n
odd. This waveguide is shown in the zy and 79 planes,
respectively, in Fig. 2, together with the splitting up of
the region into finite elements. The letters N and D on
the boundary denote Neumann (d¢/0n = 0) and Dirichlet
(¢ = 0) conditions, respectively. Note that in this cross
section there are two elements touching the origin having
only two points per element. In Fig. 2(b) the single point
at the origin is represented by the axis r = 0. By linearly
superposing the finite-element matrices for each element
in turn, we build up a single matrix equation whose eigen-
values are k? and whose eigenvector is a list of the function
values at nodal points. \

Beginning with the simple mesh shown in Fig. 2, we
subdivide the cross section uniformly producing a quad-
ratic increase in the dimension N of the overall matrix

o

(a) (b)

Fig. 2. Quadrant of a circular waveguide showing the division of
the cross section into finite elements. Neumann (N) and Dirichlet
(D) boundary conditions are shown.
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TABLE I
CutoFr WAVENUMBER FoR Opp H Mobpzs 1N CIRcULAR WAVEGUIDE
N By By B, sy o a3

8 1.938 4970 64 21 10,907 9.735 13,883

32 1.869 4388 5.601 7.173 8,607 9.552
128 1.849 bo 27 5,405 6,605 8,154 8.819
extrapolated 1.843 4213 5e3k2 64519 7,972 8.695
quadratic 1,842 | 44200 | 5,340 6.416 | 8,002 8,575
exact ) 181 | he201 | 5.351 | 6,36 | 8,015 | 8.536

equation. Results are presented in Table I for the cutoff
wavenumber ka against matrix order N for the first six
odd H modes in the circular waveguide. These are com-
pared with exact values [97] obtained from the zeros of
the appropriate Bessel function. Extrapolated values are
also given based on Aitken’s 8 process involving three
successive estimates to a quantity. Lastly, a row entitled
“quadratic” is given which computes an approximation
based on two successive estimates assuming quadratic
decrease in the error. The results headed “quadratic”
are based on the last two estimates (n = 32 and 128) and
confirm the assumption on which they are based. The
extrapolated results do not compare favorably with the
“quadratic” estimate, at least for the higher modes, since
they involve the least accurate results (n = 8) where the
error behavior is erratic. The unsettled error behavior
arises because there are too few points in the cross section
to adequately describe the field dependence. In the ter-
minology of the communications engineer, the Nyquist
or sampling rate of the field is below threshold. At any
rate, the error behavior for the dominant mode is approxi-
mately quadratic and becomes so for higher order modes
when sufficient points exist to describe their fluctuations
well. In absolute terms, we find, as expected, the error
least for the dominant mode and increasing with the
complexity of the mode. For the largest matrix tried, the
error for the dominant mode is less than 0.5 percent and
increases to ~3 percent in the worst case.

Owing to the uniformity of the waveguide along the
6 axis with homogeneous boundary conditions at the ends,
the computed eigenvector shows the exact [6] behavior
along the 6 axis, i.e., points on the same radial line are
related by the appropriate cosine or sine behavior. This
behavior provides a useful check to the programmer.

If the angle 6, of Fig. 2(b) is varied between 0 and 360°,
we produce the class of waveguides known as sector [10]
waveguides, since their walls form the sides of a circular
sector. The cutoff wavenumber of the dominant mode is
compared with the results of a finite-element analysis as
a function of section angle in Table II. This example is
particularly apt in that as 6, is varied, the point at the
origin describes all the possible types of singularity we
are likely to meet in waveguides. No extra programming
is required for these cases, since a single data card informs
the computer of the value of 6. From the results of Table
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TABLE II
CuToFr WAVENUMBER OF THE DOMINANT MoDE IN SECTOR WAVE-
GUIDE ka
o
n\\ 30 60 90 135 180
8 4e1498 2.610 1.938 1,501 1,300
32 | 42325 | 2uon X | 1.866%% | naanc® | 1,23272
128 | 426" | 268® | n&e® | 1026% | 12087
exact | L4201 2,461 81 1.401 1.166

II we can make some comments about the rate of con-
vergence in the presence of a singular point. By differenc-
ing successive approximations, we see that the error
decreases most slowly (almost linearly) for the 360°
corner (6, = 360°) and most rapidly (better than quad-
ratic) where there is no singular point and 6, is smallest
(6 = 30°). The in-between case studied previously
(6 = 90°) shows the standard quadratic error behavior.
The linear behavior for the 360° corner arises because the
first derivative of the potential is infinite and therefore
discontinuous.

The special cases of circular and sector waveguides indi-
cate that we can hope for, at best, quadratic convergence
of the eigenvalue to the exact value with an absolute
error in the extrapolated eigenvalue not cxceeding 1 per-
cent for matrix orders over 100.

B. Double-Ridged Circular Waveguides

We turn now to an important class of polar geometry
waveguide whose solution is new and which could have
important application as a supporting structure in the
generation of microwave frequencies by means of the
Gunn diode, mmpaTT, and other solid-state devices. This
waveguide is the double-ridged circular waveguide [7]
whose cross section in the first quadrant is shown in
Fig. 3, for the special case ¥ = ro/a = 1/2, 6, = n/4. The
boundary conditions are those for H modes having odd
symmetry about the y axis and even symmetry about the
z axis. The lowest order of these modes is clearly the
dominant mode which we call the Hy; since it is the per-
turbed version of the Hy; mode in the circular waveguide.
A second Hy mode exists whose symmetry about the z
and y axes is reversed. In fact, every mode of the circular
guide has its two-fold degeneracy split by the introduction
of the ridge into the waveguide. In Fig. 3, the cross section
is shown split up into 12 elements and 7 labeled points
taking account of the zero field condition on the y axis.
This is the simplest division chosen and forms the starting
point for more sophisticated subdivisions. We examine the
cutoff wavenumbers ka of the first three H modes of the
waveguide in Fig. 3 on the basis of the division shown and
two further subdivisions each time doubling the number of
labeled points, d along the x or r axis, and approximately
squaring the matrix order N. The results are presented in
Table IIT together with extrapolated values obtained by
means of Aitken’s 82 process. The rate of convergence for
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Qe — = — -

(b)

Tig. 3. Quadrant of a double-ridged circular waveguide showing
the division of the cross section into finite elements.

TABLE III
Curorr WaveENuMBER FOR Opp H Mopes IN DouBLe-RipceEp

WAVEGUIDE

d N Hyy By 0,

2 7 1.625 | 6,134 | 5.901

I % 1.508 | 5.739 5.340

100 1469 5.4.29 5.153

extrapolated 1.456 5.175 5.103

F=1/2;60 = /4.

the Hy mode is approximately quadratic and is the best
rate we might expect, considering the presence of the
singular point of the ridge. Taking account of the quad-
ratic convergence and the earlier results on the sector
waveguide with a 37/2 corner, the absolute error in the
dominant mode eigenvalue can be expected not to exceed
1 percent. This view is born out by the extrapolated value.
Rates of convergence for the Hy and Hye modes are rather
poorer than for the dominant modes owing to the fact
that their eigenvectors vary much more rapidly over the
cross section. It is safe to assume that the wavenumbers for
the smallest subdivision (d = 8) are correct to within a
few percent. Acting on these assumptions concerning
error rate, we have computed the dominant Hy mode
cutoff ka for a range of values of ridge dimensions using
the mesh subdivision which gives d = 8. These results
are shown in Fig. 4 with k/k. plotted along the vertical
axis (k. is the cutoff wavenumber for circular waveguide
of radius a). Clearly, a reduction in the cutoff frequency
of the dominant mode is possible for a large variety of
ridge dimensions. Since the wave impedance is defined
using standard notation as '

<=3 OFENE -
5 \¢/ \c/L\%

it is also reduced at a given frequency below its value in
the circular waveguide of the same outer radius. The
double-ridged waveguide thus has possible advantages
over conventional circular waveguides in that the wave
impedance is reduced and that the waveguide dimensions
are reduced for a fixed frequency of propagation. It remains
10 be seen how the waveguide bandwidth varies as a func-
tion of the ridge parameters.
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Fig. 4. Cutoff wavenumber of double-ridged circular waveguide as a function of ridge parameters.

TABLE IV
Cutorr WAVENUMBER IN DoUBLE-RIDGED WAVEGUIDES FOR BOTH
E ano H Mobes

N mode y-axis
26 Hll D
2 1 Hy N
2 H01 N
22 H 21 D
18 Ell N
20 Ell D
22 E()l N
17 E 1 D

x-axis ka ka (v = 1)
N 1,508 181
D 3,102 .81
N 3.132 3.832
D 3.252 34054
D 7.898 3,832
N 5. 004 3.832
N 14103 2,505
D 8,109 5,136

F = 1/2; 6 = 1r/4:.

We begin by taking the waveguide of Fig. 3 and com-
puting the cutoff wavenumbers of the lowest modes for
both £ and H modes, allowing all possible symmetries on
the axes. A fairly crude mesh is used (d = 4) since it is
intended only to gain a qualitative picture of the effect of
the ridge on the cutoff frequencies. These solutions are
presented in Table IV, together with those for the corre-
sponding circular waveguide. It is interesting to note that
the Hy mode with odd symmetry about the x axis has its
cutoff frequency sharply increased as do the Ey and Ey

modes. In order to define bandwidth we must consider
the means of excitation of the dominant mode. Assuming
this to be such that only those modes having the same
symmetries as the dominant mode can exist, the bandwidth
is defined as the difference between the lowest and next-
to-lowest cutoff frequencies. This is shown in units of ka
for the dominant mode of circular waveguides as a func-
tion of the ridge dimensions in Fig. 5 with the bandwidth
of circular waveguide shown for comparison. If 4, is taken
to be around 45°, increases in bandwidth can be combined
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Fig. 5. Bandwidth of double-ridged circular waveguide in units of kd of circular waveguide.

with a low figure of cutoff frequency. It is curious to note
that the bandwidth does not increase indefinitely but for
values of 7 less than 1 levels off. This occurs because the
ridge fills such a large portion of the cross section that it
affects equally the dominant and next higher order mode.

We complete discussion of the double-ridged waveguide
by showing the field behavior of the first three odd H
modes. These are shown in Fig. 6 as lines of constant
longitudinal magnetic field or transverse electric field
normalized to a maximuin value of ten. These results are
given directly by the computer as the eigenvectors of the
problem and can be produced by graph plotter. The re-
maining field components if required are found by a
process of numerical differentiation.

C. Spiral Waveguides

We complete the treatment of general cylindrical polar
geometry waveguides with a discussion of spiral wave-
guides, i.e., any waveguide whose boundaries form seg-
ments of circular spirals. The number of possibilities is

naturally infinite but we display several which are of some
interest in Fig. 7. Each of these cross sections consists of
straight-liné segments in the rf plane and therefore is
amenable to a direct analysis by the finite-element method.
We choose to examine the waveguide shown in Fig. 8 with
a simple choice of finite elements. Note that the points
on the 8 axis in Fig. 8(b) all have the same function value.
In looking for the dominant mode as a function of 6, we
find those of waveguide ‘“‘pisces” of Fig. 7 when 6, = =/2
and those of the waveguide “heart” of Fig. 7 when
8, = w. These results are shown in Table V as a function
of matrix dimensions for modes possessing an electric
wall along the z axis. We note that for the dominant mode
the rate of convergence is almost quadratic for both values
of 6. This confirms our view derived from earlier results.
In comparing the results with those for a circular wave-
guide of radius a, we observe the same mode structure
except for the absence of the low-loss Hoy mode in a spiral
waveguide which is owing to the presence of the sharp
corners in the cross section.
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Fig. 7. Some possible waveguide shapes with spiral contours.
(b) (a) Heart. (b) Pisces. (¢) Snail. (d) Shield. (e) Ying-yang. (f)

Norman,

y
Go‘r/z
i
)
I
I
t X
I
| (a)
[}
!
H © . .
O] o
Fig. 6. Tield dependence of the first three H modes in a double- °
ridged circular waveguide having even and odd symmetry about
the y and z axes, respectively. (a) Hi1. (b) Hys. (¢) Hs1.
TABLE V
Cutorr WAVENUMBER FOR A SPIRAL WAVEGUIDE ka
¢, =120 = 1 —— W
d N By B By iy iy B
2 9 2,162 | 4334 | 5,820 | 1.811 | 3.615 | 4.383
I 33 2,000 | 3,82 | 5,238 | 1.650 | 3,155 | 3.466 20 r
129 1.963 | 3,520 | 947 | 1.605 | 2843 | 3.269 )
extrapolated | 1.95h | 3.336 | 4,802 | 1,593 | 2.633 | 3.227 Fig. 8. A spiral waveguide showing mesh subdivision in the zy and

r6 planes.
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V. CoNCLUSIONS

The finite-element method for cylindrical polar geome-
tries has been developed and applied to circular and sector
waveguides to establish rates of convergence and absolute
errors in cross sections with and without singular points.
The mode structure of the double-ridged waveguide has
been established for various symmetries and it is concluded
that the waveguide has the advantages over the circular
waveguide of 1) reduced cutoff frequency and wave
impedance and 2) increased bandwidth. The most general
type of waveguide in polar geometry directly solvable by
this method has spiral boundaries. Examples of these have
been given and particular cases studied. It is clear that
other geometries not described here but nevertheless
interesting might also be solved by the method. There is,
for example, a whole class of problems involving coaxial
structures where the solution of Laplace’s or Helmholtz’s
equation might be required. This generalization of the
usual finite-element method allows boundaries linear in an
78 coordinate system to be treated exactly and effectively
removes from consideration the need to treat [117] trunca-
tion error at curved boundaries.
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The Solution of Inhomogeneous Waveguide Problems

Using a Transmission-Line Matrix

PETER B. JOHNS

Abstract—A method of applying the transmission-line matrix
method to inhomogeneous wavegiiide structures is described. The
technique uses open-circuit stubs of variable characteristic im-
pedance at each node in the matrix, thereby providing an analog for
a dielectric. LSE and LSM modes in rectangular waveguides, and
problems involving a step of dielectric are solved. Results are given
in terms of the cutoff frequency and field pattern for continuous
waveguides, and the waveguide input impedance for scattering
problems.

INTRODUCTION

HE transmission-line matrix method has been used
to solve scattering problems in waveguides [17] and
also to obtain the cutoff frequencies for waveguides of
arbitrary cross section [27]. In both cases, the waveguides

Manuscript received June 1, 1973; revised September 14, 1973.
The author is with the Department of Electrical and Electronic
Engineering, University of Nottingham, Nottingham, England.

were assumed to be filled with a homogeneous medium.
In applying the principles of the transmission-line matrix
method to random walk analysis [37], results were ob-
tained for a one-dimensional inhomogeneously filled wave-
guide. However, there is a large class of inhomogeneous
waveguide problems that require solution in two space
dimensions and an application technique for the trans-
mission-line matrix method in such eases is introduced
in this paper.

Matrix CONFIGURATION AND PROPERTIES

In [17] and [2], propagation in a two-dimensional me-
dium is represented by the voltages and currents on a
Cartesian mesh of TEM transmission lines. Analysis of
the mesh is accomplished by considering an impulsive
excitation and following the progress of impulses as they
propagate throughout the matrix. The mesh is represented
at each node by a submatrix of four numbers describing



